Owing largely to the intersection of unique natural features – lush indigenous forests, awe-inspiring mountains, endemic fynbos, lakes and beaches – the Garden Route of South Africa is a premier lifestyle destination for international visitors and South African residents alike. The region is one of the first settled in the country and has recently been experiencing a boom in development and in-migration on account of the economic growth and employment opportunities in agriculture, manufacturing, tourism, trade and business. The communities here are also characterised by significant inequalities in wealth, heavily burdened infrastructure, seasonal influxes in population numbers and resource demand, as well as variable political leadership. It has also been experiencing increasingly extreme events such as floods, fire, sea level rise and droughts, affecting both the most and least vulnerable communities in the region. The combined and interactive impacts of burgeoning formal and informal development (and subsequent manipulation of ecosystems, hardened surfaces, erosion and the like) and changes in environmental and weather conditions is signalling a social-ecological system lacking the resilience and ability to appropriately plan for and respond to such events. Regulatory mechanisms and decision-makers are driven by an outdated and linear understanding of the social-ecological system. And, while many concur that global change is a real concern for the area, confidence in the system, knowledge base and existing resilience mechanisms is limited. This paper presents an investigation of how biophysical risk and social vulnerability projections as well as governance mapping can be used as a means to resilience-building in the social-ecological system. In particular, the research highlights the existing and potential roles of civil society, local planners and disaster managers and the insurance industry in improving decision-making, developing new networks and promoting system-wide learning and action with regard to systems disturbance.